
Incorporating fossils into hypotheses of insect
phylogeny
Jessica L Ware1 and Phillip Barden1

Available online at www.sciencedirect.com

ScienceDirect
Fossils represent stem and crown lineages, and their inclusion

in phylogenetic reconstruction influences branch lengths,

topology, and divergence time estimation. In addition,

paleontological data may inform trends in morphological

evolution as well as biogeographic history. Here we review the

incorporation of fossils in studies of insect evolution, from

morphological analyses to combined ‘total evidence’ node

dating analyses. We discuss challenges associated with fossil

based phylogenetics, and suggest best practices for use in tree

reconstruction.

Address

Rutgers University, 195 University Ave, Newark, NJ 07102, United States

Corresponding author: Ware, Jessica L (jware@amnh.org)
1 Equal first authors.

Current Opinion in Insect Science 2016, 18:69–76

This review comes from a themed issue on Insect phylogenetics

Edited by Gregory W Courtney and Brian M Wiegmann

For a complete overview see the Issue and the Editorial

Available online 19th October 2016

http://dx.doi.org/10.1016/j.cois.2016.10.003

2214-5745/# 2016 Elsevier Inc. All rights reserved.

Introduction
The fate of every species is to go extinct. This results in a

mixture of crown lineages [which have living representa-

tives currently] and stem lineages [for which there are no

extant representatives] in the fossil record. How to best

incorporate such fossils into insect phylogenetic hypoth-

eses has been a matter of debate. Those in favor of

incorporating fossils in phylogenetic studies argue that

although fossilization is rare, the vast majority of insect

species have gone extinct [1] and therefore fossil taxa

offer otherwise unknowable insight into the morphologi-

cal, biogeographic, and temporal history of extant

lineages. Initially, phylogenetic analyses that included

fossils were based on morphology-only datasets [2], mak-

ing their incorporation relatively straightforward. The

advent of molecular-based phylogenetic and comparative

analysis has made the incorporation of fossil data into

combined datasets less clear. So-called ‘total-evidence’

methods of integrating molecular and morphological data

arose with the aim of addressing incongruence between

datasets while allowing fossils to impact phylogenetic

reconstruction [3]. However, these combined analysis
www.sciencedirect.com 
techniques were challenging, as initial model-based pro-

cedures prohibited simultaneous optimization of molec-

ular and morphological characters. In the last decade,

after implementation of the mk model by several software

applications [4], fossils have become increasingly com-

mon in combined molecular and morphological phyloge-

netic datasets (e.g. [5]). In addition, divergence time

[‘dating’] estimates are now widely considered integral

information when interpreting the evolution of organisms

from a phylogenetic perspective; these estimates rely on

fossil calibrations to estimate node ages. In these dating

studies, fossils may be stem or crown, treated as terminal

lineages [Figure 1, Top] (e.g. [6–19,20��,21–23,24��]) or,

more frequently [Figure 1, Bottom] used as node calibra-

tions modeled with uniform or non-uniform distributions

(e.g. [25��,26–29]). For groups with poor fossil records,

secondary calibrations [i.e., dates from prior studies, bio-

geographic constraints] have become more commonly

used when estimating divergence times, which is prob-

lematic (see [30��] for review; briefly, node ages calibrated

by secondary calibrations were found to be younger and

give spurious estimates of precision].

Whether for chronogram or phylogenetic reconstruction,

the use of fossils has often been contentious due to a lack

of agreement about how to use stem and crown fossils, in

particular when considering mixed types of data (e.g.

[31–36,73��74]). Here we review the use of fossils in past

phylogenetic datasets, discuss current methodology, and

the challenges facing future dataset analyses.

Traditional fossil treatments in phylogenetics: ‘total

evidence’ analyses

Hennig [37,38] incorporated fossils in a phylogenetic

treatment of insects, based on morphological synapomor-

phies [Figure 2a]; this was the first phylogenetic evalua-

tion of extant and living insect lineages. When

reconstructing evolutionary relationships among insects,

authors have argued that fossils provide vital information

about character polarity (e.g. [39]). Several have argued

further that fossil inclusion may reduce long-branch at-

traction [2,40]. Donoghue et al. [41] tested the effect of

fossils on amniote and seed-plant morphological phylog-

eny, and suggested that fossil inclusion may result in

topological differences. Similarly, Lee [42] found that

potentially incorrect relationships resulted when fossils

were omitted from phylogenetic reconstructions of

lizards. Further, the results from Wiens [43] support

the inclusion of even incomplete fossils in phylogenetic

reconstruction despite some level of missing data,
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Figure 1

Annual number of papers including “fossils as terminal lineages”

Annual number of papers including “molecular morphology
combined fossil phylogeny +r8s +BEAST calibration”
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Comparison of publication rates for alternative divergence time estimation protocols. Top total papers per year found on Google Scholar, which

include ‘fossils as terminal lineages’ in text. Bottom total annual papers on Google Scholar including the terms ‘molecular morphology combined

fossil phylogeny calibration’ which utilized the phylogenetic programs r8s or BEAST.
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Figure 2
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Summary of common methods for fossil integration. (a) Traditional phylogenetic placement of fossil and extant taxa through optimization of

morphological data. (b) Combined analysis which includes both molecular and morphological data in tree construction. (c) Node dating divergence

time estimation that includes fossil taxa only to calibrate certain nodes. The placement of calibrations, which implicitly assumes a phylogenetic

interpretation of fossils, is at the discretion of the investigator. (d) More recent tip dating approach which calibrates the age of the tree based on

the placement of fossil taxa determined through combined analysis. Note: for subfigures (c) and (d), the probability densities for Dy represent

alternative user-inputed calibration constraints given the same fossil: lognormal, uniform, normal.
especially when molecular data are included [Figure 2b]

[44]; combined analyses with fossils have been suggested

to reduce long branch attraction even with the proportion

of missing data is high [45]. Model-based analysis of

combined datasets including fossil and extant taxa in a

morphological matrix with molecular characters became

more common during the first decade of the 21st century

(e.g. [46,47]; see [48] for a discussion of the importance of

morphology in placing fossils via Bayesian analyses of

combined datasets). Recently, Guillerme and Cooper
www.sciencedirect.com 
[49��] evaluated the effect of missing morphological data

in combined ‘total evidence’ simulated datasets; they

accounted for missing data in the fossil record and sam-

pling effects in simulated morphological and molecular

datasets using both maximum likelihood and Bayesian

analyses. In their study, missing data from fossil and living

taxa affected the topologies in different ways, as did

phylogenetic reconstruction methods, suggesting that

missing morphological data for extant taxa was most

detrimental to recovering the ‘best’ tree topology. Taken
Current Opinion in Insect Science 2016, 18:69–76
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together, these studies suggest that fossils are valuable in

phylogenetic analyses, and may improve topologies, but

that missing data for living taxa and low numbers of

morphological characters may limit the positive impact

that fossils might have on tree topology and branch length

estimation.

Fossils as terminal lineages or calibration priors in

divergence time estimation

Datasets including fossil and extant taxa have been used

for phylogenetic reconstruction and, more recently, di-

vergence time estimation. Most commonly, fossils are

utilized to ‘calibrate’ nodes on a phylogenetic tree, effec-

tively acting as a link between relative branch lengths

based on molecular evolution and real, geologic time

[Figure 2c]. In addition to ‘total evidence’ phylogenetic

reconstruction discussed above, it is now possible to

calibrate divergence date analyses by including fossils

as terminal taxa in ‘tip dating’ approaches [Figure 2d].

Among the criticisms for using ‘total evidence’

approaches in dating studies is a critique of use of the

mk model to model phenotypic data. Despite this criti-

cism, however, it has become fashionable to include fossil

lineages, coded for morphology, in combined datasets

because of potential reductions in the errors associated

with the fossil calibration step (but see [50��] for discus-

sion). Including fossils as terminal lineages can impact the

topology of extant lineages, which may reduce node age

error. Terminal fossils may reduce divergence time error

associated with misapplication of fossil calibrations, and

may further influence extinction rate estimates [7]. The

first attempts to use fossils as terminal lineages in a

combined ‘total evidence’ analysis for divergence time

estimation were undertaken by Lee et al. [6], Ware

et al. [7] and Pyron [8]. Each study incorporated fossils

as terminal lineages, with Lee et al. [6] and Pyron [8]

running straightforward dating analyses and Ware et al. [7]

comparing the divergence time estimates recovered using

fossils as terminal lineages to those recovered using fossils

as uniform node priors. O’Reilly et al. [50��,51��] proposed

best practices for total evidence dating, and suggested a

method for incorporating fossil age uncertainty into di-

vergence time estimation priors. Briefly, they argue that

fossils should not be used simply as point estimates, as

fossil preservation bias and the myriad of measurements

used to estimate fossil ages [e.g., lithographic, magnetos-

tratigraphic data] inherently result in error around a given

age [i.e. resulting in a minimum and maximum age for a

given fossil]. Rather, they suggest a method for modeling

the uncertainty in fossil ages, which they suggest may

reduce the perceived advantage [in terms of node age

error reduction] of ‘total evidence’ studies. Finally, there

are initial results that suggest it may be desirable to use

both tip and node dating in conjunction as a means of

mitigating the drawbacks of each method alone

[50��,51��].
Current Opinion in Insect Science 2016, 18:69–76 
Variation among taxa in abundance of stem-
group and crown-group lineages
Whether fossils are important components in phylogenet-

ic and divergence time analyses is an inconsequential

debate for those working on insect orders with poor fossil

records, as a dearth of fossils for genera, such as Polythore, a

damselfly with only a handful of incertae sedis fossil repre-

sentatives, preclude their inclusion in such analyses.

However, for many taxa, there are an abundance of fossils,

and for these groups the challenge is often to distinguish

whether a fossil belongs to a crown-group or stem-group

lineage. This designation is not trivial: in node-dating

analyses, crown-affiliation or stem-affiliation will impact

which node is calibrated, ultimately altering inferred

divergence estimates. Crown groups are monophyletic

taxa, living or extinct, which all possess synapomorphies

for the group, except in cases of derived loss. Stem

lineages are more closely related to the crown group than

they are to extant sister groups, but lie outside of the

crown group itself; stem taxa may possess some crown

group synapomorphies, but by definition lack all char-

acters necessary for crown group placement. Crown-group

or stem-group placement should be informed by morpho-

logical characters, not previously obtained divergence

estimates. Cockroaches [Blattodea] and Dragonflies/

Damselflies [Odonata] both are rich in stem-group and

crown-group fossils. Dragonflies and damselflies comprise

over 6000 extant species, and there are large numbers of

crown fossils for several families; for the monogeneric

family Epiophlebiidae, however, only four crown species

exist with the remaining species in the family belonging

to Jurassic stem lineages (see [52], for review). Epioph-

lebiidae have suffered from near complete extinction,

with the four extant species found currently only in Asia

(the Himalayas, China and Japan [53,54]). Epiophlebia has

rarely been incorporated in divergence time estimation

analyses, but it would be an excellent taxon to use to test

the effect of including stem fossils on estimates of ex-

tinction. Blattodea comprise the termites and cock-

roaches, whose oldest fossil is Bassaitermes (140 Ma

[55]). Within the cockroaches, there is controversy re-

garding the status of putative Bashkirian ‘roachoid’ fos-

sils, which have been omitted from several studies due to

their uncertain status (e.g. [25��,56]) yet included in

others (e.g. [57]; but see [58]). This debate is of consid-

erable importance, given that the inclusion of stem roa-

choid fossils changes the ages of the Polyneoptera and

within it, the Dictyoptera, dramatically influencing inter-

pretations of the evolution of sociality (Polyneoptera age

[25��]: 377–231 Ma; 57: 408–367 Ma].

In addition to improving divergence estimations, the

incorporation of fossils can alter the perceived evolution-

ary history of certain groups, particularly as stem lineages,

with no living members and thus no means of inclusion

within extant-only datasets, can have substantial impact

on ancestral trait and area reconstruction. While the
www.sciencedirect.com
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Box 1 Challenges and advantages of paleoentomological

preservation

As with all fossils, there are biases that influence the composition of

preserved insects (e.g. [68��]); fossil deposits are inherently distorted

windows into the past. Although there are numerous secondarily

preserved taxa (ichnotaxa), the two most common kinds of insect

fossils utilized for biogeographic, phylogenetic, and chronological

inference are those impressed in rock or trapped in fossilized tree

resin [amber] — each with distinct environmental requirements and

temporal ranges (reviewed in [55]). The oldest hexapod fossils are

silicified remains embedded in chert (Devonian [69]). Impression

fossils in general typically are restricted to taxa with a high

propensity toward capture in marine and lake sediments [70].

Although such fossils are often partial and wanting in detail, the

oldest representatives of numerous insect groups are known from

the early Mesozoic or Paleozoic impressions [Coleoptera, Diptera,

Hemiptera, Hymenoptera, Lepidoptera, Odonata, and others]. While

poor and partial preservation may lead to greater missing data in

combined analysis procedures, there is evidence that this may not

severely impact phylogenetic topology or divergence estimation

[11,71]. Amber, while unmatched in preservational quality and

fidelity, is more restrictive in a temporal sense: most amber deposits

are dated to the Cenozoic or Cretaceous, and while there is amber

from the Triassic, inclusions are exceedingly rare [72]. Therefore,

complete amber fossils may lend themselves particularly well to

integration in phylogenetic reconstruction in a morphological sense,

however, frequently an investigator must focus on older, less

complete impression fossils as these are of great value as oldest

known calibration points. Nevertheless, the insect fossil record is

exceedingly rich, with thousands of described taxa and many tens of

thousands of specimens.
conceptual paragons of stem diversity are probably non-

avian dinosaurs, there are insect groups with significant

early branching fossil taxa. Among these are early ants,

which were diverse, social, and members of lineages

distinct from extant groups [59,60], Cretaceous termites

with caste specialization [61], many species of fungus

gnats [62], and others (see [55]). With respect to biogeo-

graphic inference, there are clear examples of relictual

distributions revealed only after the discovery of fossil

taxa. The termite genus Mastotermes and ant subfamily

Myrmiciinae, both endemic to Australia today, are

known from fossil deposits in the Americas and Europe,

suggesting a previous worldwide distribution [63,64]. It is

important to note that such distributions are not recov-

ered through analysis of modern biogeographic ranges

alone.

What challenges face us?
Several challenges face researchers incorporating fossils

in their datasets, such as model choice, fossil selection,

and calibration methodology in divergence time estima-

tion. To date, few studies have evaluated the effect of the

incorporation of fossils in next generation datasets and

biogeographical or diversification rate analyses (see [58]

for discussion). Many have argued for or against the use of

the mk model, which is based on the 1969 Jukes Cantor

model to model phenotypic diversity present in morpho-

logical matrices (see [65] for review). It is possible,

however, that the benefits of morphological fossil data

inclusion may outweigh the costs of the error associated

with poor model fit. Future work should aim to modify the

mk model to better model reversals, exaptations and

covariation; O’Reilly et al. [51��] further suggest the

use of continuous characters to better characterize the

evolution of phenotypes. The most appropriate fossils to

include in an analysis varies with time as new fossils are

discovered, and as taxonomy or stratigraphic estimates are

revised. Hence, fossils choice is not trivial, and it

behooves researchers to evaluate their fossil selection

based on current knowledge rather than the taxon choice

of past studies. Calibration methods in node-dating stud-

ies are not universal, with extreme heterogeneity across

studies in the use of uniform versus non-uniform priors,

fossils as point calibrations, fossils with and without age

uncertainty, and the types of programs used to estimate

divergence times [66]. Gavryushkina et al. [67��] recon-

structed the phylogeny of penguins, accounting for the

possibility that stem lineages may be direct ancestors of

other lineages in their matrix [Fossilized Birth Death

modeling, FBD], and found that including stem-fossil

penguins greatly improved node age estimates of crown

penguins.

Conclusions
The incorporation of fossils in phylogenetic reconstruc-

tions has been shown to improve crown group topology

and node-age estimates, especially when the unique
www.sciencedirect.com 
attributes of stem-fossils and crown-fossils are considered.

There are still debates about aspects of combined fossi-

l + extant taxon analyses, regarding the limited models for

morphological data and choices of fossil calibration pro-

cedures, for example. With ‘total evidence’ dating slowly

increasing in practice [Figure 1b], phylogenetic recon-

structions that incorporate estimates of time will likely

become more accurate and reliable. Moreover, the utili-

zation of fossil data will improve the reconstruction of

biogeographic patterns, and expand hypotheses detailing

the early evolution of groups with extensive fossil histo-

ries (Box 1).
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